
Chapter 2

Physical contents of Dirac equation:
preliminary discussion

As we have noted in the preceding chapter, the prime motivation for finding an alternative to the
Klein–Gordon equation was the requirement that the probability defined in terms of a quantum
mechanical wave function should be positive. So, let us now examine this problem for the Dirac
equation; for convenience, we return to the natural units. Eq. (1.23) then reads

𝑖𝑖
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= −𝑖𝑖𝛼𝛼 · Δ𝜕𝜕 + 𝛽𝛽𝛽𝛽𝜕𝜕 (2.1)

(we will use the standard representation (1.32) in what follows). Let us recall that 𝜕𝜕 is a
four-component wave function that is conventionally written as a column

𝜕𝜕(𝑥𝑥) =
����
�

𝜕𝜕1(𝑥𝑥)
𝜕𝜕2(𝑥𝑥)
𝜕𝜕3(𝑥𝑥)
𝜕𝜕4(𝑥𝑥)

����
�
. (2.2)

Upon Hermitian conjugation of Eq. (2.1) one has

−𝑖𝑖 𝜕𝜕𝜕𝜕
†

𝜕𝜕𝜕𝜕
= 𝑖𝑖 Δ𝜕𝜕† 𝛼𝛼 + 𝛽𝛽𝜕𝜕†𝛽𝛽 𝛽 (2.3)

where 𝜕𝜕† = (𝜕𝜕∗
1𝛽 𝜕𝜕

∗
2𝛽 𝜕𝜕

∗
3𝛽 𝜕𝜕

∗
4), and we have utilized the hermiticity property (1.27) of 𝛼𝛼 and 𝛽𝛽.

Multiplying Eq. (2.1) by 𝜕𝜕† from the left and (2.3) by 𝜕𝜕 from the right, and taking then the
difference of the two equations, one gets immediately

𝜕𝜕

𝜕𝜕𝜕𝜕
(𝜕𝜕†𝜕𝜕) + Δ(𝜕𝜕† 𝛼𝛼𝜕𝜕) = 0 𝛽 (2.4)

which is the anticipated continuity equation. Thus we may identify the probability density and
the probability current as

𝜌𝜌Dirac = 𝜕𝜕†𝜕𝜕 𝛽 𝑗𝑗Dirac = 𝜕𝜕† 𝛼𝛼𝜕𝜕 . (2.5)
The positivity of the 𝜌𝜌Dirac is obvious, since

𝜕𝜕†𝜕𝜕 = |𝜕𝜕1 |2 + |𝜕𝜕2 |2 + |𝜕𝜕3 |2 + |𝜕𝜕4 |2 . (2.6)

This is an expected result, due to the fact that the Dirac equation (2.1) is, in a sense, “square root
of Klein–Gordon equation”; more precisely, it is an evolution equation of the 1st order in time,
having the form

𝑖𝑖
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝐻𝐻 𝜕𝜕 𝛽 (2.7)
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where 𝐻𝐻 is the Dirac Hamiltonian

𝐻𝐻 = −𝑖𝑖𝛼𝛼 · Δ+ 𝛽𝛽𝛽𝛽 𝛽 (2.8)

Thus, the time evolution is generated by an operator of energy, as it should be, in accordance
with the general principles of quantum theory.

A next issue is the angular momentum. Let us start with orbital angular momentum,
defined in the standard way as 𝐿𝐿 = 𝑥𝑥 × 𝑝𝑝, where 𝑝𝑝 is the (linear) momentum 𝑝𝑝 = −𝑖𝑖 Δ.
As we know, 𝐿𝐿 commutes with the non-relativistic Hamiltonian in the Schrödinger equation
(1.4). For the Dirac Hamiltonian (2.8) one gets, employing the canonical commutation relation
[𝑥𝑥 𝑗𝑗 , 𝑝𝑝𝑘𝑘 ] = 𝑖𝑖𝑖𝑖 𝑗𝑗 𝑘𝑘 ,

[𝐻𝐻, 𝐿𝐿] = −𝑖𝑖( 𝛼𝛼 × 𝑝𝑝) 𝛽 (2.9)

Let us remark that the vector product in (2.9) is defined formally as usual, i.e.

( 𝛼𝛼 × 𝑝𝑝) 𝑗𝑗 = 𝜀𝜀 𝑗𝑗𝑘𝑘𝑗𝑗𝛼𝛼𝑘𝑘 𝑝𝑝𝑗𝑗 𝛽

So, apparently, there is something missing, since any decent angular momentum should be an
integral of motion for the free particle, i.e. the corresponding operator should commute with the
Hamiltonian. In other words, the fact that [𝐻𝐻, 𝐿𝐿] ≠ 0 is a hint that we are on the right track
towards the electron spin. A good candidate for such an additional ingredient of the full angular
momentum is guessed quite easily. Let us consider the 4 × 4 matrices

𝑆𝑆 =
1
2
Σ , Σ =

(𝜎𝜎 0
0 𝜎𝜎

)
, (2.10)

and recall that the Pauli matrices have the commutation relations

[𝜎𝜎𝑗𝑗 , 𝜎𝜎𝑘𝑘 ] = 2𝑖𝑖𝜀𝜀 𝑗𝑗 𝑘𝑘𝑗𝑗𝜎𝜎𝑗𝑗 𝛽 (2.11)

This means that the matrices 𝑆𝑆 defined by (2.10) satisfy

[𝑆𝑆 𝑗𝑗 , 𝑆𝑆𝑘𝑘 ] = 𝑖𝑖𝜀𝜀 𝑗𝑗 𝑘𝑘𝑗𝑗𝑆𝑆𝑗𝑗 , (2.12)

which, of course, is a set of commutation relations for components of an angular momentum.
Needless to say, the matrices 𝑆𝑆 possess eigenvalues ±1/2 (because (𝜎𝜎𝑗𝑗 )2 = 1 for 𝑗𝑗 = 1, 2, 3).
Now we may evaluate the commutator [𝐻𝐻, 𝑆𝑆]. Clearly, 𝑆𝑆 commutes with the diagonal matrix 𝛽𝛽
(see (1.32)). Concerning the commutator involving 𝛼𝛼, one gets first

[𝛼𝛼𝑗𝑗 , Σ𝑘𝑘 ] =
(

0 2𝑖𝑖𝜀𝜀 𝑗𝑗 𝑘𝑘𝑗𝑗𝜎𝜎𝑗𝑗

2𝑖𝑖𝜀𝜀 𝑗𝑗 𝑘𝑘𝑗𝑗𝜎𝜎𝑗𝑗 0

)
,

so that
[𝐻𝐻, Σ𝑘𝑘 ] = 2𝑖𝑖( 𝛼𝛼 × 𝑝𝑝)𝑘𝑘 𝛽 (2.13)

Summarizing the results of our simple algebraic exercise, we have

[𝐻𝐻, 𝐿𝐿] = −𝑖𝑖( 𝛼𝛼 × 𝑝𝑝) ,
[𝐻𝐻, 𝑆𝑆] = 𝑖𝑖( 𝛼𝛼 × 𝑝𝑝) ,

(2.14)

and thus
[𝐻𝐻, 𝐽𝐽] = 0 , (2.15)
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with
𝐽𝐽 = 𝐿𝐿 + 𝑆𝑆 𝑆 (2.16)

Thus, in such a straightforward manner we have recovered the electron spin as a part of the
conserved total angular momentum (2.16).

Let us now recall the problem of negative energy solutions of the Klein–Gordon equation,
mentioned in the preceding chapter (cf. (1.12)). One may wonder whether the Dirac equation
suffers an analogous difficulty. For clarifying this point, we are going to consider the solution
of Eq. (2.1) in the form of a plane wave involving the usual factor exp

[−𝑖𝑖(𝐸𝐸𝐸𝐸 − 𝑝𝑝 · 𝑥𝑥)] . To make
our discussion as simple as possible, we will restrict ourselves to the case of a particle at rest,
i.e. set 𝑝𝑝 = 0. Eq. (2.1) is then reduced to

𝑖𝑖
𝜕𝜕𝜕𝜕

𝜕𝜕𝐸𝐸
= 𝛽𝛽𝛽𝛽𝜕𝜕 𝑆 (2.17)

Taking into account the block diagonal structure of the matrix 𝛽𝛽 ((1.32), it is useful to split the
𝜕𝜕 as

𝜕𝜕 =

(
𝜑𝜑
𝜒𝜒

)
, (2.18)

where 𝜑𝜑 and 𝜒𝜒 are two-component column vectors. Eq. (2.17) is then recast as

𝑖𝑖
𝜕𝜕𝜑𝜑

𝜕𝜕𝐸𝐸
= 𝛽𝛽𝜑𝜑 , (2.19)

𝑖𝑖
𝜕𝜕𝜒𝜒

𝜕𝜕𝐸𝐸
= −𝛽𝛽𝜒𝜒 𝑆 (2.20)

Thus, two linearly independent solutions of Eq. (2.19) may be written e.g. as

𝜑𝜑(1) = 𝑒𝑒−𝑖𝑖𝛽𝛽𝐸𝐸

(
1
0

)
, 𝜑𝜑(2) = 𝑒𝑒−𝑖𝑖𝛽𝛽𝐸𝐸

(
0
1

)
, (2.21)

and similarly for (2.20),

𝜒𝜒(1) = 𝑒𝑒𝑖𝑖𝛽𝛽𝐸𝐸

(
1
0

)
, 𝜒𝜒(2) = 𝑒𝑒𝑖𝑖𝛽𝛽𝐸𝐸

(
0
1

)
𝑆 (2.22)

In this way, we obtain a set of four independent solutions of Eq. (2.1)

𝜕𝜕(1) = 𝑒𝑒−𝑖𝑖𝛽𝛽𝐸𝐸
����
�

1
0
0
0

����
�
, 𝜕𝜕(2) = 𝑒𝑒−𝑖𝑖𝛽𝛽𝐸𝐸

����
�

0
1
0
0

����
�
, 𝜕𝜕(3) = 𝑒𝑒𝑖𝑖𝛽𝛽𝐸𝐸

����
�

0
0
1
0

����
�
, 𝜕𝜕(4) = 𝑒𝑒𝑖𝑖𝛽𝛽𝐸𝐸

����
�

0
0
0
1

����
�
𝑆 (2.23)

Obviously, 𝜕𝜕(1) and 𝜕𝜕(2) correspond to the positive rest energy 𝐸𝐸 = 𝛽𝛽, while 𝜕𝜕(3) and 𝜕𝜕(4)
carry negative energy 𝐸𝐸 = −𝛽𝛽 (they are also characterized by the two possible spin projections
to the third axis, up and down (±1/2)). It is interesting to notice that in the considered case,
the existence of the negative energy solutions is a consequence of the specific structure of the
matrix 𝛽𝛽. If 𝛽𝛽 were 4 × 4 unit matrix, we would have only a solution with positive energy. But,
alas, 𝛽𝛽 can never be the unit matrix because of the required anticommutation relations (1.26).
As we have already noted in the preceding chapter, the appearance of negative energy solutions
is a generic feature of the equations of relativistic quantum mechanics. We will discuss the
plane-wave solutions of Dirac equation in detail later on.

The last topic that we are going to discuss here is a derivation of the spin magnetic
moment of the electron. Soon after the birth of relativistic quantum mechanics this was indeed
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