
Chapter 48

One-loop vacuum polarization in detail

Renormalized UV finite parts of the contributions of the one-loop QED diagrams, which rep-
resent an important portion of the radiative corrections to scattering amplitudes are, in general,
quite complicated functions of external momenta. For instance, the expression for the vertex
correction Γ𝜇𝜇 (𝑝𝑝′, 𝑝𝑝) contains also higher transcendental functions like the dilogarithm (Spence’s
function). On the other hand, the vacuum polarization form factor Π(𝑞𝑞2) is relatively simple and
can be expressed fully in terms of elementary functions. A detailed description of this quantity
is the main subject of this chapter.

Let us start with the regularized expressions for Π(𝑞𝑞2) that we have obtained in chapters
39 and 40. Including also the coupling factor 𝑒𝑒2 = 4𝜋𝜋𝜋𝜋 in the formulae (39.19), (40.24), we
have
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in the dimensional regularization and

ΠPV(𝑞𝑞2) = 𝑒𝑒2
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in the Pauli–Villars scheme.
Thus, we see that Π(𝑞𝑞2) = Π(𝑞𝑞2) −Π(0) does not depend on the regularization scheme.

One has, using 4𝜋𝜋𝜋𝜋 instead of 𝑒𝑒2,
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A brief inspection of the integrand in the last expression reveals that one should distinguish three
regions of the 𝑞𝑞2 values, namely

I) 𝑞𝑞2 < 0 ,
II) 0 < 𝑞𝑞2 ≤ 4𝑚𝑚2 , (48.4)

III) 𝑞𝑞2 > 4𝑚𝑚2 ,

with regard to the distinct properties of the quadratic function

𝐶𝐶 (𝑥𝑥) = 𝑚𝑚2 − 𝑥𝑥(1 − 𝑥𝑥)𝑞𝑞2 (48.5)
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in these kinematical areas. Indeed, for 𝑞𝑞2 < 0 the function 𝐶𝐶 (𝑥𝑥) is positive for any 𝑥𝑥 ∈ (0, 1)
and has real zeroes outside the interval (0, 1), namely
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. (48.6)

In the region II, 𝐶𝐶 (𝑥𝑥) is positive for any 𝑥𝑥 ∈ (0, 1) and has no real roots whatsoever. The region
III is, in a sense, the most interesting case. The function 𝐶𝐶 (𝑥𝑥) then has real roots inside the
interval (0, 1), namely
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, (48.7)

and thus it changes sign for 𝑥𝑥 between 0 and 1. In particular, 𝐶𝐶 (𝑥𝑥) < 0 for 𝑥𝑥 ∈ (𝑥𝑥−, 𝑥𝑥+)
and 𝐶𝐶 (𝑥𝑥) > 0 for 𝑥𝑥 ∈ (0, 𝑥𝑥−) ∪ (𝑥𝑥+, 1). However, the negative value of 𝐶𝐶 (𝑥𝑥) means that the
logarithm in the integrand in (48.3) has a non-trivial imaginary part for 𝑥𝑥 ∈ (𝑥𝑥−, 𝑥𝑥+). Thus,
one may expect that the function Π(𝑞𝑞2) will be purely real for 𝑞𝑞2 ∈ (−∞, 4𝑚𝑚2) and complex for
𝑞𝑞2 > 4𝑚𝑚2!

The evaluation of real parts of the integral in (48.3) in the regions I, II, III is elementary,
but somewhat tedious. It is clear that it can be carried out by means of partial integration, which
results in integrating a rational function. We leave it to a hard-working reader as an exercise in
the elementary calculus, and here we only summarize the relevant results.
I) For 𝑞𝑞2 < 0, one gets

Π(𝑞𝑞2) = 𝛼𝛼
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II) For 0 ≤ 𝑞𝑞2 ≤ 4𝑚𝑚2,
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III) For 𝑞𝑞2 > 4𝑚𝑚2,
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The evaluation of the imaginary part of Π(𝑞𝑞2) for 𝑞𝑞2 > 4𝑚𝑚2 is quite simple, so it is worth
doing it here explicitly. To begin with, let us recall what is the origin of the function 𝐶𝐶 (𝑥𝑥) in
the argument of the logarithm in (48.3). Going back to the expression (38.19) for 𝐶𝐶, one cannot
overlook the remark that 𝑚𝑚2 is to be understood as 𝑚𝑚2 − 𝑖𝑖𝑖𝑖 , where 𝑖𝑖 > 0 is an infinitesimal
constant, ubiquitous in Feynman propagators. Then, if the real part of 𝐶𝐶 (𝑥𝑥) is negative, the
imaginary part of the logarithm is equal −𝑖𝑖𝜋𝜋. An explanatory comment is perhaps in order here:
Note that the logarithm of complex variable 𝑧𝑧 = |𝑧𝑧 |𝑒𝑒𝑖𝑖𝑖𝑖 is ln 𝑧𝑧 = ln |𝑧𝑧 | + 𝑖𝑖𝑖𝑖 and it has the branch
cut on the real axis, extending from −∞ to 0; with the specification of 𝑚𝑚2 as 𝑚𝑚2 − 𝑖𝑖𝑖𝑖 in mind,
we are on the lower side of the cut, where 𝑖𝑖 = −𝜋𝜋.
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Thus, the evaluation of ImΠ(𝑞𝑞2) is easy. We have

Π(𝑞𝑞2) = ReΠ(𝑞𝑞2) + 𝑖𝑖 ImΠ(𝑞𝑞2) ,

where
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𝜋𝜋

𝑥𝑥+∫

𝑥𝑥−

d𝑥𝑥 𝑥𝑥(1 − 𝑥𝑥) (−𝑖𝑖𝜋𝜋) ,

i.e.

ImΠ(𝑞𝑞2) = 2𝛼𝛼
𝑥𝑥+∫

𝑥𝑥−

d𝑥𝑥 𝑥𝑥(1 − 𝑥𝑥) , (48.11)

with 𝑥𝑥± being given by (48.7) as the solution of the quadratic equation

𝑥𝑥2 − 𝑥𝑥 + 𝑚𝑚2

𝑞𝑞2 = 0 . (48.12)

So, from (48.11) we have
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Working out the last expression is a refreshing exercise in high school maths. Indeed, one may
utilize the elementary identity
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as well as the properties of roots of the quadratic equation (48.12), such as
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For (48.13) one then gets, after a simple manipulation,
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The last result is in fact highly remarkable. If we denote, provisionally, 𝑞𝑞2 = 𝑀𝑀2 and
come back to 𝑒𝑒2 = 4𝜋𝜋𝛼𝛼, the formula (48.14) reads

ImΠ(𝑞𝑞2 = 𝑀𝑀2) = 𝑒𝑒2
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Now it turns out that
ImΠ(𝑞𝑞2 = 𝑀𝑀2) = Γ

𝑀𝑀
, (48.16)

where Γ is the rate of the decay of massive vector boson (“massive photon” with mass 𝑀𝑀) into
a pair of fermions, with all particles unpolarized. To appreciate this, the reader is urged to
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