Appendix F

Electromagnetic form factors of electron

In this appendix, we discuss briefly the general formula (50.15). As we have already mentioned before, at the tree level it is valid automatically, with $F_{1}\left(q^{2}\right)=1, F_{2}\left(q^{2}\right)=0$. Now the question is what one gets in higher orders for the matrix product

$$
\begin{equation*}
\mathscr{M}_{\mu}=\bar{u}\left(p^{\prime}\right) \Gamma_{\mu}\left(p^{\prime}, p\right) u(p) \tag{F.1}
\end{equation*}
$$

where $\Gamma_{\mu}\left(p^{\prime}, p\right)$ denotes the vertex function represented by Feynman diagrams with two external electron lines and one external photon line (pictorially, see Fig. F.1). Needless to say, p and p^{\prime}

Fig. F.1: Schematic depiction of the QED vertex function that embodies the electron magnetic moment.
are taken to be on the mass shell, $p^{2}=p^{\prime 2}=m^{2}$, while the external photon line is in general off-shell. Within the covariant perturbation expansion we are using, the \mathscr{M}_{μ} should be a Lorentz four-vector, and it is a function of two independent four-momenta p and p^{\prime}.

Thus, one may guess immediately that the most general form of the \mathscr{M}_{μ} could be

$$
\begin{equation*}
\mathscr{M}_{\mu}=\bar{u}\left(p^{\prime}\right)\left[A_{1}\left(q^{2}\right) \gamma_{\mu}+A_{2}\left(q^{2}\right) p_{\mu}+A_{3}\left(q^{2}\right) p_{\mu}^{\prime}\right] u(p) . \tag{F.2}
\end{equation*}
$$

As regards the invariant amplitudes (form factors) $A_{j}\left(q^{2}\right), j=1,2,3$, these might depend on p^{2}, $p^{\prime 2}$ and the scalar product $p \cdot p^{\prime}$. But $p^{2}=p^{\prime 2}=m^{2}$, so there is just one independent kinematical invariant, e.g. $q^{2}=\left(p^{\prime}-p\right)^{2}=2 m^{2}-2 p \cdot p^{\prime}$. A remark is perhaps in order here. When the loop integrations inside the blob in Fig. F. 1 are carried out, one gets some Lorentz invariant form factors and the resulting $\Gamma_{\mu}\left(p^{\prime}, p\right)$ incorporates diverse products of γ-matrices, which enter the game either as γ_{μ}, or slashed combinations $\not p$ and $\not p^{\prime}$. To simplify the products of γ-matrices, one can employ their basic anticommutation relations, which lead e.g. to $\not p \gamma_{\mu}=2 p_{\mu}-\gamma_{\mu} \not p$, $\not p \not p^{\prime}=2 p \cdot p^{\prime}-\not p^{\prime} p p$, etc. In this way, one may eventually encounter just a finite number of γ-matrix products, such as

$$
\begin{equation*}
\not p \gamma_{\mu}, p_{\mu} \not p^{\prime}, \not p \gamma_{\mu} \not p^{\prime}, \ldots \tag{F.3}
\end{equation*}
$$

The readers are encouraged to activate their imagination and try to find all possible relevant γ-matrix products involved here. By the way, a detailed explicit evaluation of $\Gamma_{\mu}\left(p^{\prime}, p\right)$ at oneloop level, sketched in Chapter 50, is quite instructive in this context. Higher-order diagrams can of course produce long chains of γ-matrices, but one can always employ the anticommutation relations, and move the matrices inside the chain in such a way that one eventually gets $(\not p)^{2}=$ $p^{2}=m^{2}$ and similarly for $\left(\not p^{\prime}\right)^{2}$. Moreover, one should put factors $\not p$ and $\not p^{\prime}$ in the right order, such that $\not p^{\prime}$ stands on the left and $\not p$ on the right; one may then utilize Dirac equations $\bar{u}\left(p^{\prime}\right) \not p^{\prime}=$ $m \bar{u}\left(p^{\prime}\right)$ and $\not p u(p)=m u(p)$. A typical example of the above-mentioned manipulations is as follows: one may get easily, upon appropriate anticommutations of γ-matrices,

$$
\not p \gamma_{\mu} \not p^{\prime}=2 p_{\mu} \not p^{\prime}+2 p_{\mu}^{\prime} \not p-2 p \cdot p^{\prime} \gamma_{\mu}-\not p^{\prime} \gamma_{\mu} \not p .
$$

In such a way, one can justify the simple structure (F.2).
Well, after such a long explanatory comment, let us take the form (F.2) for granted and proceed further. For our purpose, it is more convenient to recast the expression in terms of the combinations $p_{\mu}^{\prime}+p_{\mu}$ and $p_{\mu}^{\prime}-p_{\mu}$, so that we write Eq. (F.2) in an equivalent form

$$
\begin{equation*}
\mathscr{M}_{\mu}=\bar{u}\left(p^{\prime}\right)\left[A\left(q^{2}\right) \gamma_{\mu}+B\left(q^{2}\right)\left(p_{\mu}^{\prime}+p_{\mu}\right)+C\left(q^{2}\right)\left(p_{\mu}^{\prime}-p_{\mu}\right)\right] u(p) . \tag{F.4}
\end{equation*}
$$

Now we may use the Ward-Takahashi (WT) identity (see Chapter 42, the formula (42.20)), which in our present notation reads simply

$$
\begin{equation*}
q^{\mu} \mathscr{M}_{\mu}=0 \tag{F.5}
\end{equation*}
$$

Using the decomposition (F.4) and the identities $\bar{u}\left(p^{\prime}\right) q u(p)=0,\left(p_{\mu}^{\prime}+p_{\mu}\right)\left(p^{\prime \mu}-p^{\mu}\right)=0$, the WT relation (F.5) is reduced to $q^{2} C\left(q^{2}\right)=0$, or,

$$
\begin{equation*}
C\left(q^{2}\right)=0 . \tag{F.6}
\end{equation*}
$$

Thus, the form (F.4) becomes

$$
\begin{equation*}
\mathscr{M}_{\mu}=\bar{u}\left(p^{\prime}\right)\left[A\left(q^{2}\right) \gamma_{\mu}+B\left(q^{2}\right)\left(p_{\mu}^{\prime}+p_{\mu}\right)\right] u(p), \tag{F.7}
\end{equation*}
$$

and with the help of the Gordon identity (50.25) this can be immediately rewritten as a combination of terms involving γ_{μ} and $\sigma_{\mu \nu} q^{\nu}$. The formula (50.15) is thereby proven.

Finally, let us remark that we have demonstrated the validity of the WT identity at the one-loop level, but in fact it is quite general, as a consequence of the gauge invariance of QED. A detailed discussion of this topic can be found e.g. in the book [6], Chapter 8, section 8.4.1. Thus, we may conclude that the form (50.15) is valid to any order of perturbation expansion.

